
IV. 
plasmas 

Complexity induced anisotropic bimodal intermittent turbulence in space 

Tom Chang and Sunny W.Y. Tam 
Center for Space Research, Massachusetts Institute of Technology, Cambridge, 
Massachusetts 02 139 USA 

Cheng-chin Wu 
Department of Physics and Astronomy, University of California, Los Angeles, California 
90095 USA 

Abstract 

The "physics of complexity" in space plasmas is the central theme of this exposition. 

It is demonstrated that the sporadic and localized interactions of magnetic coherent 

structures arising from the piasma resonances can be the source for the coexistence of 

nonpropagating spatiotemporal fluctuations and propagating modes. Non-Gaussian 

probability distribution functions of the intermittent fluctuations from direct numerical 

simulations are obtained and discussed. Power spectra and local intermittency measures 

using the wavelet analyses are presented to display the spottiness of the small-scale 

turbulent fluctuations and the non-uniformity of coarse-grained dissipation that can lead 

to magnetic topological reconfigurations. The technique of the dynamic renormalization 

group is applied to the study of the scaling properties of such type of multiscale 

fluctuations. Charged particle interactions with both the propagating and nonpropagating 

portions of the intermittent turbulence are also described. 
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I. INTRODUCTION 

Simultaneous coexistence of propagating modes and intermittent nonlinear 

spatiotemporal structures is the norm of the state of the plasma medium in the space 

environment. The "physics" of the bimodal state of such type of admixture of turbulent 

fluctuations may be understood from the point of view of the development and 

interactions of coherent structures arising from plasma resonance sites.'" 

In this treatise, we shall consider the dynamical complexity in space plasmas from 

such a concept. Results of two-dimensional direct numerical sir nu la ti on^^-^ including the 

calculated fluctuation probability distribution functions and local intermittency measures 

based on the wavelet transforms will be presented to characterize the sporadic, localized, 

and scale-dependent nature of the intermittent turbulence. 

The concepts of scale invariance ahd symmetry-breaking phenomena of such 

invariance properties will be described based on the dynamical theory of the 

renormalization group." Illustrative examples will be provided to elucidate the utility of 

this powerful theoretical technique in addressing the complexity of space plasmas. 

The intricate interactions among the charged particles in the plasma medium and the 

propagating and nonpropagating intermittent fluctuations will be considered and an 

example related to the energization of the auroral ions will be provided." 

We have endeavored to make this exposition sufficiently self-contained. 

Approximately one third of this treatise is a review of previous work and the remaining 

two thirds are discussions of new research results. 
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11. THE ORIGIN OF COMPLEXITY 

A. AlfvCnic resonances and coherent structures 

Most field theoretical discussions begin with the concept of propagation of waves. For 

example, in the MHD formulation, one can combine the basic equations and express them in the 

following propagation forms: 

@V/dt=B*VB+-*- ,  dBldt=B-VV+*** (1) 

where the ellipses represent the effects of the anisotropic pressure tensor, the compressible and 

dissipative effects, and all notations are standard. Equations (1) admit the well-known AlfiCn 

waves. For such waves to propagate the propagation vector k must contain a field-aligned 

component, Le., B.V+ik-BfO.  However, at sites where the parallel component of the 

propagation vector vanishes (i-e., at the resonance sites), the fluctuations are localized. Around 

these resonance sites (usually in the form of curves), it may be shown that the fluctuations are 

held back by the background magnetic field, forming AlfiCnic coherent  structure^.'^^'^"^ 

B. Coarse-grained belicity 

Let us now consider the geometry of the AlfvCnic coherent structures. For an ideal MHD 

system, it has been suggested by TaylorI4 that in a relaxed state such a structure would be 

approximately force-free (i.e., J x B  = 0 )  due to the approximate conservation of the coarse- 

grained helicity defined as K = IAaBdV integrated over the coherent structure, where J and B 

are the current density and magnetic field and A is the vector potential. 

To obtain some physical insight of these structures, let us consider the special situation for the 

auroral region andor the solar wind and make the reasonable assumption that the perturbed 

magnetic field fluctuations are much smaller than and essentially transverse to the mean magnetic 

field Bo (which will be temporarily assumed to be uniform for the current discussion). Thus, let 

us write B = (SB,,GB~,Bo) , where z is in the direction of the mean magnetic field, and (x, y) are 

orthogonal coordinates normal to z. The force-free condition for constant Bo and V . J = 0 then 
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leads approximately to the scalar condition B.VJ, = 0 , obtained by taking the z-component of 

the curl of J x B  = 0 .'1,159'6 It can be shown that, with the inclusion of the kinetic effects through 

the anisotropic pressure terms and the generalized Ohm's law, the above results are still 

approximately valid. We have, then, approximately, 

BoaJz / a z  = -(sB,aiax+sByaiay)Jz +.- (2) 

where the ellipsis represents the other modifying effects. For convenience, let us introduce the 

flux function ~v by writing (a f ld y,-dvld x )  = (dBx,GBy) for the perturbed transverse 

components of the magnetic field in the (x ,y)  directions such that V .B = 0 is satisfied. Then, 

Jz and w are governed by Eq. (2) and the Ampere's law (neglecting the modiqing effects 

represented by the ellipsis). 

A simple example of the flux function and axial current density satisfying the above 

conditions would be the class of circularly cylindrical solutions of ~ ( r )  and JZ(r). Generally, 

the solutions would be more involved because of the variabilities of the local conditions of the 

plasma and the three-dimensional geometry. Moreover, the'dynamic coherent structures with the 

inclusion of plasma pressure and other modifying effects (including electron-inertia terms) would 

be even more complicated. However, we expect these structures to be usually in the form of 

field-aligned flux tubes, Fig. 1. 

Generally, there exist various types of propagation modes (whistler modes, electromagnetic 

ion cyclotron waves, etc.) in magnetized plasmas. Thus, we envision a corresponding number of 

different types of plasma resonances and associated coherent structures that typically characterize 

the dynamics of the plasma medium under the influence of a background magnetic field. 

Generally, such coherent structures may take on the shapes of convective forms, nonlinear 

solitary structures, pseudo-equilibrium configurations, as well as other types of spatiotemporal 

varieties. These structures might be locally generated or convected from elsewhere (such as some 
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of the observed structures in the solar wind that might have been originated from the Sun’s 

surface”la. Some of these structures may be more stable than the others. They, however, 

generally are not purely laminar entities as they are composed of bundled fluctuations of all 

frequencies. Because of the nature of the physics of complexity, it will be futile to attempt to 

evaluate andor study the details and stabilities of each of these infinite varieties of structures; 

although some basic understanding of each type of these structures will generally be helphl in 

the comprehension of the full complexity of the underlying nonlinear plasma dynamics. 

These coherent structures will wiggle, migrate, deform and undergo different types of motions 

and interactions under the influence of the local plasma and magnetic topologies. In the next 

section, we will consider how the coherent structures can interact and produce the type of 

intermittency generally observed in a complex dynamical plasma. 

C. Interactions and complexity 

When coherent magnetic flux tubes of the same polarity migrate toward each other, strong 

local magnetic shears are created, Fig. 2. It has been demonstrated by Wu and Chang7-9 that 

existing sporadic nonpropagating fluctuations will generally migrate toward the strong local shear 

region. Eventually the mean local energies of the coherent structures will be dissipated into these 

concentrated fluctuations in the coarse-grained sense and. induce reconfigurations of the magnetic 

field geometry. Figure 3(a) displays 2D MHD simulation results for homogeneous turbulence. 

The calculations were carried out with ( 5 12 x 5 12 ) grid points in a doubly periodic ( x.y ) domain 

of length 2n in both directions. The left panel of Fig. 3(a) gives contours of the magnetic flux at 

t = 300. For reference, the sound wave and AlfiCn wave traveling times through a distance 27r 

are about 4.4 and 60, respectively. Regions of intense current density (strong magnetic shear) are 

evident in the right panel of Fig. 3(a). (We found the results are very similar with or without a z- 

component magnetic field.) Figure 3(b) is essentially the same as Fig. 3(a) except that these 

results were obtained with (1024x1024) grid points. Thus, our simulation results are quite 
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robust. To understand the effect of the coarse-grained dissipation, we have performed 2D MHD 

simulations of ( 5 12 x 5 12 ) grid points with a sheared magnetic field of B, = 0.1 cosy . Figure 

3(c) are the contours of the magnetic flux and current density distributions for the shear case. The 

neutral sheet regions are near y = OSn, 1 Sn. The clustering of the coherent structures (enhanced 

coarse-grained dissipation) and the reconfiguration of the contours of the magnetic fields near the 

neutral sheets are evident in the displays. 

Such enhanced intermittency at the intersection regions has been observed by Bruno et a1.'7,'8 

in the solar wind using the tools of wavelet analyses and local intermittency measure (LIM). As 

mentioned above, the coarse-grained dissipation will then initiate "fluctuation-induced nonlinear 

in~tabilities";4"~ and, thereby reconfigure the topologies of the coherent structures of the same 

polarity into a combined lower local energetic state, eventually allowing the coherent structures to 

merge locally. On the other hand, when coherent structures of opposite polarities approach each 

other due to the forcing of the surrounding plasma, they might repel each other, scatter, or induce 

magnetically quiescent localized regions. Under any of the conditions of the above interaction 

scenarios, new fluctuations will be generated. And, these new fluctuations can provide new 

resonance sites; thereby nucleating new coherent structures of varied sizes. 

All such interactions can occur at any location of a flux tube along its field-aligned direction, 

and the phenomenon.is fully three-dimensional. In order to gain some insight of the physical 

picture of the overall dynamics of the interactions of the coherent structures, let us again consider 

the auroral zone or the solar wind as an illustrative example. We make the plausible assumption 

that some aspects of the plasma dynamics may be approximately understood in terms of the 

formulation of reduced magnetohydrodynamics (RMHD)?')' In this approximation, we assume 

that the mean magnetic field is much larger than the transverse fields, and the field-aligned 

fluctuations of the magnetic and velocity components are much smaller than their transverse 

12 



counterparts. As a consequence, the density of the plasma is uniform. Writing the equations in 

SI units with p = 1 and Po = 1 , we have: 2233 

(3) dvidt  =Bza4iaz,  dwldt =B.Vj 

where y(x ,y)  is the transverse flux function defined by B=eZxVtv+Bze,, @(x,y) is the 

transverse stream function defined by v, =e, xV4,  and w = V: 4 is the vorticity, j = V:W is 

the field-aligned current density with d ldt =a/&+ v-V . The equations are written in the 

moving frame along the mean magnetic field direction z, and (x, y) are the transverse orthogonal 

directions. 

From Eqs. (3), we note that the primary nonlinear interactions occur generally in the 

transverse direction to the mean magnetic field. And, the coupling in the field-aligned direction 

is essentially linear. Thus, fluctuations generated by the transverse nonlinear interactions will 

scatter and evolve nonlinearly primarily in the transverse direction. At this point, we realize that 

the RMHD formulation is too restrictive as some of the interactions of the flux tubes may become 

more oblique and thereby allowing the fluctuations to attain a broader range of values of 41 than 

otherwise would have been admitted by the RMHD approximation. Thus, a significant amount of 

the fluctuations generated by the interactions can become commensurate with the plasma 

dispersion relation and propagate in the field-aligned direction as AlfiCn waves due to this three- 

dimensional complexity-induced enhanced transport. Eventually a dynamic topology of a 

complex state of coexisting propagating and nonpropagating magnetic fluctuations is created. In 

the auroral region, the plasma may be electron-inertia dominated and the above discussion can be 

easily generalized to include such kinetic effects. 

HI. SCALING AND SYMMETRY BREAKING 

A. Path integral and the dynamic renormalization group 

In the above sections, we provided some convincing arguments as well as numerical and 

observational evidences indicating that space plasma turbulence is generally in a state of 
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topological complexity. By "complex" topological states we mean magnetic topologies that are 

not immediately deducible from the elemental (e.g., MHD and/or Vlasov) equations.24 Below, 

we shall briefly address the salient features of the analogy between topological and equilibrium 

phase transitions. A thorough discussion of these ideas may be found in Chang 4 ~ ' 1 2 5  (and 

references contained therein). 

For nonlinear stochastic systems exhibiting complexity, the correlations among the 

fluctuations of the random dynamical fields are generally extremely long-ranged and there exist 

many correlation scales. The dynamics of such systems are notoriously difficult to handle either 

analytically or numerically. On the other hand, since the correlations are extremely long-ranged, 

it is reasonable to expect that the system will exhibit some sort of invariance under coarse- 

graining scale transformations. A powerful technique that utilizes this invariance property is the 

method of the dynamic renormalization group.'o2526 The technique is a generalization of the 

static renormalization group introduced by Wilson?' 

As it has been demonstrated by Chang et u Z . , ~ ~  based on the path integral formalism, the 

behavior of a nonlinear stochastic system far from equilibrium may be described in terms of a 

"stochastic Lagrangian L It, such that the probability density functional P of the stochastic system 

is expressible as: 

where cp(x,t) =4i(i  = 1,2, ..., N) are the stochastic variables such as the fluctuating magnetic, 

velocity and electric fields, and X(x , t )  = Xi (i = 1,2, ..., N) are the conjugate stochastic momentum 

variables that may be rigorously derived from the underlying stochastic equations governing 

cp .IO2526 

Then, the renormalization-group (coarse-graining) transformation may be formally expressed 

as: 

aLm=m ( 5 )  
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where R is the renoniialization-group (coarse-graining) transformation operator and i? is the 

coarse-graining parameter for the continuous group of transformations. It will be convenient to 

consider the state of the stochastic Lagrangian in terms of its parameters { P, }. Equation (9, 

then, specifies how the Lagrangian, L, flows (changes) with P in the affine space spanned by 

{ P, }, Fig. 4. 

B. Forced and/or self-organized criticality 

Generally, there exists. a number of fixed points (singular points) in the flow field, at which 

dL / di? = 0. At each such fixed point (L* or L * * in Fig. 4), the correlation length should not be 

changing. However, the renormalization-group transformation requires that all length scales must 

change under the coarse-graining procedure. Therefore, to satisfy both requirements, the 

correlation length must be either infinite or zero. When it is at infinity, the dynamical system is 

then at a state of forced and/or self-organized criticality (FSOC),Z5,** analogous to the state of 

criticality in equilibrium phase tran~itions.2~ To study the stochastic behavior of a nonlinear 

dynamical system near such a dynamical critical state (e.g., the one characterized by the fixed 

point L*), we linearize the renormalization-group operator R about L*. The mathematical 

consequence of this approximation is that, close to dynamic criticality, certain linear 

combinations of the parameters that characterize the stochastic Lagrangian L will correlate with 

each other in the form of power laws. These include, in particular, the (k, w ), i.e. mode number 

and frequency, spectra of the correlations of the various fluctuations of the dynamic field 

variables. 

Such power law behavior has been detected in the probability distributions of solar flare 

intensities,” in the AE burst occurrences as a function of the AE burst strength,” in the global 

auroral W I  imagery of the statistics of size and energy dissipated by the magnetospheric 

system:* in the probability distributions of spatiotemporal magnetospheric disturbances as seen 

in the W I  images of the nighttime ion~sphere:~ and in the probability distributions of durations 
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of Bursty Bulk 

amenable to alternative  explanation^.^' 

although some of the above interpretations of observed data may also be 

In addition, it can be demonstrated from such a linearized analysis of the dynamic 

renormalization group that generally only a small number of (relevant) parameters are needed to 

characterize the stochastic state of the system near criticality2’ justifying the recent work 

suggesting that certain dynamic characteristics of the magnetotail could be modeled by the 

deterministic chaos of low-dimensional nonlinear systems.3638 

C. Illustrative examples 

The intermittency description for plasma turbulence of nonpropagating fluctuations may be 

modeled by the combination of a localized chaotic functional growth equation of a set of relevant 

order parameters and a functional transport equation of the control pimneters.”.” Below, we 

shall provide two simple phenomenological models, which may have some relevance. to the 

auroral zone or the solar wind.5 

1. Model I 

Assuming that the parallel mean magnetic field & is suficiently strong and the magnetic 

fluctuations dominate in the transverse directions, we introduce the flux function w for the 

transverse fluctuations as follows, 

B = e, x V V +  &e, 

where we have set B, = Bo = constant. The coherent structures for such a system are generally 

flux tubes approximately aligned in the mean parallel direction.” Conservation of helicity (e.g., 

under the RMHD approximation) indicates that the integral of over a flux tube is 

approximately constant. Instead of invoking the RMHD formalism, however, here we simply 

consider w as an order parameter. As the flux tubes merge and interact, they may correlate over 

long distances, which, in turn, will induce long relaxation times near FSOC.5’5 Let us assume 

that the transverse size of the system is sufficiently broad compared to the cross sections of the 
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coherent structures (or flux tubes), such that we may invoke homogeneity and assume the 

dynamics to be independent of boundary effects. We may then model the dynamics of flux tube 

mergings and interactions, in the crudest approximation, in terms of the following order-disorder 

intermittency equation: 

a v k  /at  = - rkaF/dv -k  + fk (7) 

where vk are the Fourier components of the flux function, rk an analytic function of k 2 ,  

F ( v k , k )  the state function, and fk a random noise which includes all the other effects that are 

not included in the first two terms of this crude model. 

2. Model II 

In &e above mode!, we have r?eg!ected heth the effects of difksion m d  convectinn. We text 

construct a phenomenological model that includes the transport of cross-field diffusion. We now 

assume the state function to depend on the flux function v/ and the local pseudo-energy measure 

{ . Thus, in addition to the dynamic equation (7), we now also include a diffusion equation for 

5. In Fourier space, we have 

a{, / a t  = -DkzaF / a { - k  + hk 

where {k are the Fourier components of {, D(k) is the diffusion coefficient, and the state 

function is now F(Wk,{k,k), and hk is a random noise. By doing so, we separate the slow 

pseudo-energy transport due to diffusion of the local pseudo-energy measure { from the noise 

term of (7). We note that an approach similar to these ideas have been considered by Klimas et 

al. 40 

3. Dynamic renormalization-group analysis 

We have performed renormalization-group analyses as outlined above for the two kinetic 

We note that under the dynamic renormalization-group (DRG) models described above. 

transformation, the correlation function C of vk should scale as: 
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eaceC(k,w) = C(kee,weaJ) (9) 

where w is the Fourier transform oft ,  P the renormalization parameter as defined in Sec. IIIA, 

and (ac,-) the correlation and dynamic exponents. Thus, Clw*c'* is an absolute invariant 

under the DRG, or C - w-' , where A = -a, la,. DRG analysis of Model I with Gaussian noise 

yields the value of I I  to be approximately equal to 2.0. DRG analyses performed for Model I1 for 

Gaussian noises for several approximations yield the value for I I  to be approximately equal to 

1.88 to 1.66. 

Interestingly, for both models, DRG calculations give an approximate value of -1.0 for the 

w-exponent for the trace of the transverse magnetic correlation tensor. Matthaeus and 

~ o ~ s t e i n ~ '  had sugges>ted LM ~ i c h  hi exponent icpiescnt the supeipsiiioii of discrete 

structures emerged from the solar convection zone. This value for the w-exponent is mean- 

field-like, thus is probably universally applicable to the low frequency fluctuations such as those 

considered by M & G as well as other more intermittent small scale fluctuations observed in 

space plasmas. Also, the corresponding k-exponent is found to be approximately equal to -2 for 

both models. These results compare rather favorably with the results of our 2D MHD numerical 

simulations, Fig. 5 .  

D. Symmetry breaking 

As the dynamical system evolves in time (autonomously or under external forcing), the state 

of the system (i.e., the values of the set of the parameters characterizing the stochastic 

Lagrangian, L) changes accordingly. A number of dynamical scenarios are possible. For 

example, the system may evolve from a critical state A (characterized by L**) to another critical 

state B (characterized by L*) as shown in Fig. 4. In this case, the system may evolve 

continuously from one critical state to another. On the other hand, the evolution from the critical 

state A to critical state C as shown in Fig. 4 would probably involve a dynamical instability 

characterized by a first-order-like topological phase transition (fluctuation-induced nonlinear 
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instability) because the dynamical path of evolution of the stochastic system would have to cross 

over a couple of topological (renormalization-group) separatrices. For such a situation the 

underlying magnetic topology and its related plasma state will generally undergo drastic changes. 

Similar ideas along these lines have been advanced by Sitnov et ~ 1 . ~ ~  and simulated based on the 

cellular automata calculations of sandpile models.43P4 

Under either of these above scenarios, the spectra indices will generally change either 

continuously or abruptly. Such type of multifractal phenomena is commonly observed in the 

magnetotail, the auroral zone, and the solar ~ i n d . ~ ~ * ~ ~ * ~ ~ , ~ ~ ~ ~  

Alternatively, a dynamical system may evolve from a critical state A to a state D (as shown in 

Fig. 4) which may not be situated in a regime dominated by any of the fixed points; in such a 

case, the final state of the system will no longer exhibit any of the characteristic properties that 

are associated with dynamic criticality. As another possibility, the dynamical system may deviate 

only moderately from the domain of a critical state characterized by a particular fixed point such 

that the system may still display low-dimensional scaling laws, but the scaling laws may now be 

deduced from straightforward dimensional arguments. The system is then in a so-called mean- 

field state. (For general references of symmetry breaking and nonlinear crossover, see Chang and 

Stanley 'O; Chang et al. 51*52; Nicoll et al. 5334) 

Experimental observations of plasma fluctuations in the space plasma environment generally 

yield broken power law spectra similar to those displayed in Fig. 5 of the 2D numerical 

simulation results. Such abrupt changes of scaling powers of the k-spectra are signatures of 

symmetry breaking. The broken symmetries may be due to the abrupt change of the degree of 

intermittency of fluctuations from large to small scales, or due to the change of the underlying 

physics (e.g., from MHD to kinetic processes), or variations of external forcing, or finite 

boundaries and other effects. 
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IV. DYNAMICAL INTERMITTENCY 

Nearly all fluctuations in space plasmas exhibit intermittency. For turbulent dynamical 

systems with intermittency, the transfer of energy (or other relevant scalars and tensors) due to 

fluctuations from one scale to another deviates significantly from uniformity. A technique of 

measuring the degree of intermittency is the study of the departure from Gaussianity the 

probability distribution functions of turbulent fluctuations at different scales. To demonstrate this 

point, let us refer to the 2D numerical simulation results described in Sec. 11. For example, we 

may generate the probability distribution function P(6B2 ,  s) of 6B2  (x, 6) 

B2 (x + 6) - B2 (x) at a given time t for such simulations, where 6 is the scale of separation in 

the x-direction. The left panel of Fig. 6(a) displays the calculated results of P(6B2,  6) from the 

(5 12x5 12) 2D simulation for the homogeneous case for several scales 6 . 

From this figure, we note that the deviation from Gaussianity becomes more and more 

pronounced at smaller and smaller scales. In an interesting paper by Hnat et dS5, they 

demonstrated that such probability distributions for SOIA wind fluctuations exhibit approximate 

mono-power scaling according to the following functional relation: 

P ( 6 B 2 , S )  = S-s<(6B26-s ,S)  (10) 

where s is the mono-scaling power. We found that mono-power scaling also holds approximately 

for our simulated results with the value of s equal to approximately 0.335 as shown in the right 

panel of Fig. 6(a). 

The reason for mono-power scaling for 6B2 may be understood in terms of the 

renormalization-group arguments presented in Sec. 111. If we assume that 6B2  is one of the 

relevant eigenoperators near a critical fixed point, then the probability distribution function for 

P ( ~ B ~  , 61, SB' , as we11 as 6 will scale linearly as follows: 

P I  = Pexp(a,,l), S B ~  I = S B ~  exp(uB2l), 6' = Sexp(asl) (1 1 )  
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where (up,uB~,a~) are scaling powers. Thus, we obtain two irreducible absolute invariants: 

P 1 P I a s  and SB2 I SaB2 l a d .  Since P = P(6B2,  6) , there must be a functional relation between 

these two in~a r i an t s .~”~~  Therefore, we obtain the following scaling relation among 

(P, S B ~  , S) : P 1 ~ a p  la6 = F ( S B ~  I sa$ Ias 1. 

Without loss of generality, we may choose a, = 1. With the additional constraint that the 

probability distribution functions are normalized, we immediately obtain the expression of Hnat 

et al. as shown in Eq. (1 0). 

Actually the scaling relation (1 0) is approximate in that the tails of the scaled distributions in 

the right panel of Fig. 6(a) do not exactly fall onto one curve. This is the intrinsic nature of the 

strong intermittency at small scales. Thus, representations of the probability density functions 

will involve multi-parameters in general and may sometimes be represented more accurately, for 

example, by the Cashing or Kappa d i ~ t r i b u t i o n s ~ ~ ~ ~  Their scaling properties are more subtle and 

will not be considered in this treatise. 

As it has been pointed out in Sec. IIC, sporadic nonpropagating fluctuations will generally 

migrate toward regions of strong’shear. We have calculated the probability distribution functions 

for regions near and away from the neutral sheet for the (512x512) 2D simulation for the shear 

case, Figs. 6(b,c). As expected, the degree of intermittency (deviation from Gaussianity) is much 

stronger near the neutral sheet than away from it. Both regions exhibit approximate mono-power 

scaling; though, again the tail regions do not scale exactly, particularly near the neutral sheet. 

Since the degree of intermittency generally increases inversely with scale, it will be interesting 

to study the degrees of intermittency locally at different scales. This can be accomplished by the 

method of Local Intermittency Measure (LIM) using the wavelet transforms. A wavelet 

transform generally is composed of modes which are square integrable localized functions that 

are capable of unfolding fluctuating fields into space and scale.60 Left panel of Fig. 7( 1) is the 
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power spectrum of a complex Morlet wavelet transform of the current density Jz for the 

(5 12x5 12) 2D homogeneous case. We notice that the intensity of the current density is sporadic 

and varies nonuniformly with scale. 

We now define LIM( 1) as the ratio of the squared wavelet amplitude Iw(x, d)l’ and its space 

averaged value <lyr(x,6)I2 >x .  We note that LIM(1) = 1 for the Fourier spectrum. To 

emphasize the variation of intensity with scale, we also consider the logarithm of LIM( 1). It has 

been suggested by Meneveau that the space average of the square of LIM( l), which is a scale 

dependent measure of the kurtosis or flatness, is a convenient gauge of the deviation of 

intermittency from Gaussianity. We denote this measure by LIM(2). It is equal to 3 if the 

yuLLulll I l ~ l L  ~ ~ l b l  ;g. 7 / 1 1  n-A C’ Qln\ n-0 --n-L;-n i t11 aiu 1 ig. uta/ c u b  W a o y i i d  YluUaUlllLJ ..--hnh:1:t., disp;‘;r;:ion is Gai;ssian. Rd+-... -:-h+ -,-,1 -f E* 

displays of the calculated results of logLIM(1) and LIM(2) for the (512x512) 2D simulation for 

the homogeneous case using the complex Morlet transform. We notice that the fluctuations are 

indeed scale dependent, localized and strongly intermittent at small scales. Similar experimental 

results using the wavelet transforms have been found, for example, by Consolini et aZ.62 for the 

magnetotail and Bruno et aZ.” for the solar wind. 

Figure 7(2) gives graphical displays of logLIM(1) for the (512x512) 2D simulation for the 

shear case for both away from and at the neutral sheet region. We note that the degree of 

intermittency is indeed much stronger at the neutral sheet region. This result is also confirmed by 

the graphical displays of LIM(2) in Fig. 8(b). 

In the above, we considered some simplified models and numerical examples that may have 

some relevance to intermittent turbulence in space plasmas. Realistic models for these 

phenomena will generally be much more complicated. For example, from the RMHD 

formulation of (3), we recognize that there should at least be two competing order parameters. 

These are the flux function w and the stream function (which is linearly proportional to the 

electrostatic potential). Thus, the intermittency equation (such as (7)) needs to be generalized to 
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. 
accommodate these coupled order parameters. Within the RMHD formulation, there exist usehl 

Hamiltonian and operator-algebra structure~,6~ which should prove invaluable in developing the 

generalized state function F of the coupled order parameters and the state variables as well as the 

intermittency equation itself. Formulations of coupled order parameters and their related 

theoretical analyses for a variety of criticality problems in condensed matter physics have been 

considered by Chang et ul." (and references contained therein). 

In addition, the transport equation such as Eq. (8) for the global system should generally also 

include convection and acceleration terms in addition to that of diflbsion.6 Thus, at the minimum 

our model transport equation must take on tbe form of the Rh4HD (3) with the addition of 

"coarse-grained" dissipation terms which generally will be functionals of the coupled order 

parameters. It should also contain terms representing the complexity-induced enhanced field- 

aligned transport. These generalizations will not be considered in this treatise. 

V. ENERGIZATION OF IONS BY INTERMITTENT FLUCTUATIONS IN THE 

AURORAL ZONE 

It has long been recognized that the commonly observed broadband, low frequency electric 

field fluctuations are responsible for the acceleration of oxygen ions in the auroral zone; In order 

for the fluctuating electric field to resonantly accelerate the ions continuously as the ions evolve 

.upward along the field lines, they must be in continuous resonance with the ions. There did not 

seem to exist a fully viable mechanism that can generate a spectrum of fluctuations broadband 

and incoherent enough to fulfill this stringent requirement. 

Assuming that the RMHD formulation holds approximately in the auroral zone, the 

electrostatic fluctuations transverse to the field-aligned direction are given approximately by the 

velocity fluctuations: v x &e,. The ordering due to the stream function @ may be important in 

the auroral zone and therefore, the electrostatic fluctuations can be quite significant there. 

Because of the small scales involved, the dynamic intermittency produced by the merging and 
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interactions of the coherent structures is probably generated by the whistler turbulence, electron- 

inertia related tearing modes, andor other collisionless modes." Therefore, a significant portion 

of the fluctuations would be kinetic. Nevertheless, the electric field fluctuations would still be 

predominantly transverse and electrostatic. Thus, a significant portion of the low frequency 

fluctuations commonly observed in the auroral zone are probably contributed by these 

nonpropagating intermittent fluctuations. 

Below, we shall briefly discuss how such fluctuations can efficiently energize the oxygen ions 

from ionospheric to magnetospheric energies. Assuming the oxygen ions are test particles, they 

would respond to the transverse electric field fluctuations El near the oxygen gyrofrequency 

locally according to the Langevin equation: 

dvl ldt = qiEI lmi  (12) 

To understand the stochastic nature of the Langevin equation, we visualize an ensemble of 

ions f (VI) and study its stochastic properties. Assuming that the interaction times among the 

particles and the local electric field fluctuations are small compared to the global evolution time, 

we may write within the interaction time scale: 

f (vl,t+'At)= If (vl  - A v L , ~ ) ~ ( v ~  -Avl,Avl)dAvl 

where e ( v I  -Avl,AvI) is the normalized transition probability of a particle 

(13) 

whose velocity 

changes from vl -AvI to vl in At, and Avl ranges over all possible magnitudes and 

transverse directions. Standard procedure at this point is to expand both sides of (1 3) in Taylor 

series expansions: 

af a 
at hl 
-At+O((M)2)=--*[(A~l)f] 
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. 
where 

(4) = j~(V1,AVl)AVld(AV,) 9 and 

(AV~AV,) = ~~(v,,Avl)Av,Avld(Avl). (15b) 

(15a) 

If we assume the ~((AV~)~) terms are of order (At)' or higher, then in the limit of At + 0, we 

obtain a Fokker-Planck where the drift and diffusion coefficients are defined as: 

D, =< Avl> /At and D2 =< AvlAvl > l2At in the limit of At + 0. These coefficients may 

be calculated straightforwardly using the Langevin equation. If the transition probability 8 is 

symmetric in A V l ,  then D, vanishes and (14) leads to a diffusion equation in the transverse 

direction. We note that if the electric field fluctuations are Gaussian, then the higher order 

correlations of the fluctuations are automatically equal to zero. 

We shall come back to the discussion of the effects of general intermittent fluctuations on 

particle energization processes. For the moment, let us assume the approach using'the Fokker- 

Planck formulation is valid and proceed. Since we have assumed the time scale for the particle 

fluctuation interactions is much smaller than the global evolution time of the ion populations, we 

may then write the steady global evolution equation along an auroral field line s under the 

guiding center approximation and neglecting the cross-field drift as: 

where VII ,VL are the parallel and perpendicular components of the particle velocity with respect to 

the field-aligned direction. This expression may be interpreted as a convective-diffusion equation 
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for the density of the guiding center ions per unit length of flux tube f / B, , in the coordinate 

To evaluate D, , the gyrotropic perpendicular diffusion coefficient, from D2 , we recognize 

that the electric field fluctuations are broadband both in kl and w . Therefore, at all times, some 

portion of the fluctuations will be in resonance with the ions. The resonance condition, however, 

is strongly dependent on the localization and scale dependency of the intermittent fluctuations." 

We demonstrate below, as a simple illustrative example, how such resonant interactions may be 

accomplished by neglecting the Doppler shifts due to k such that only the intermittent 

fluctuations clustering around the instantaneous gyrofrequency of the ions provide the main 

cc?ntrih~tions to the diffitsicr. precess. Skiidaid aigiiilerits then :ea6 to the fuiiowing expression 

for the perpendicular diffusion coefficient: 

(17) 

where < (E2  I (Q, ) >r is the resonant portion of the average of the square of the transverse electric 

field fluctuations evaluated at the instantaneous gyrofrequency of the ions, a,. 

Measurements by polar orbiting satellites indicate that the electric field speck1 density C 

follows an approximate power law C-" in the range of the local oxygen gyrofrequencies, where 

a is a constant. If we make the additional approximations by assuming that the spectrum 

observed at the satellite is applicable to all altitudes and choosing the geomagnetic field to scale 

with the altitude as s - ~ ,  we would then expect Z(Q,, s) to vary with altitude s as s3a. Because 

we have made some rather restrictive resonance requirements for the fluctuations to interact with 

the ions, we expect the resonant portion of the average of the square of the transverse electric 

field fluctuations to be only a fiaction 77 of the total measured electric field spectral density. 

Therefore, we arrive at the following approximate expression for the diffusion coefficient: 

26 



Dl = (qnqf /2m~)Co(sls , )3a (18) 

We have performed global Monte Carlo simulations for Eqs. ( 1  6) and (1 8) for the conic event 

discussed by Retterer et ~ 1 . ~ ~  with a = 1.7 and CO = 1 . 9 ~  1 0-7 (Vlm)' sed rad . Top panel of 

Figure 9 shows the measured oxygen velocity distribution contours and the second panel of Fig. 9 

shows the corresponding calculated contours for q=  118 at the satellite altitude of so = 2RE. 

Thus, with one eighth of the measured electric field spectral density contributing, the broadband 

electric field fluctuations can adequately generate an oxygen distribution function with the energy 

and shape comparable to that obtained from observations. We have also calculated the oxygen 

ion distributions for a range of altitudes under the same conditions. Figure 10 is a plot of the 

average pad!e! enera Y ~ ~ S E S  the ~ ~ ~ z g e  p e ~ e f i d i ~ ~ ! ~  energy' i;ei O X Y ~ C E  ion z i k  i ~ i i ~  

evolve upward along the geomagnetic field line. We note that as the energies increase with 

altitudes, the ratio of the energies becomes nearly a constant. 

These results are comparable to our previous calculated results based on the assumption that 

the relevant fluctuations were purely field-aligned propagating electromagnetic ion cyclotron 

As discussed in the previous sections, we generally expect the coexistence of 

nonpropagating transverse electrostatic nonlinear fluctuations and a small fraction of field-aligned 

propagating waves in the auroral zone. Thus, the ion energization process in the auroral zone is 

probably due to a combination of both types of fluctuations. As it has been discussed in Chang et 

aL', an asymptotic solution exhibiting such behavior may be obtained analytically in closed 

form. Therefore, in the asymptotic limit (Le, at sufficiently high altitudes), it is expected that 

such an ion distribution will become entirely independent of its low altitude initial conditions. In 

fact, it has been shown by Crew and Chang 68 that the ion distributions will become self-similar at 

sufficiently high altitudes and everything will scale with the altitude. 

The above sample calculations did not include the self-consistent electric field that must be 

determined in conjunction with the energization of the ions as well as the electrons. This is 
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particularly relevant in the downward auroral current region where the electric field can provide a 

significant pressure cooker effect such as that suggested by Gorney et u I . ~ ~  and demonstrated 

convincingly by Jasperse 70 and Jasperse and Grossbard71 based on global evolutional calculations 

similar to those considered by Tam and Chang 72-75 for the solar wind and Tam et ul.76*77 for the 

polar wind. These ideas will not be considered in this treatise. 

We now return to the discussion of the effect of intermittency on ion heating. Measurements 

of the electric field spectral density are generally limited by the response capabilities of the 

measuring instruments. The faster the instruments can collect data, the more refined the scales of 

the measurements. As it has been seen in Sec. IV, we expect the measured spectrum density to 

exhibit small-scale intermittency behavior. In fact, it is known that fast response measurements 

generaiiy exhibit strongiy intermittent signatures of the fluctuations. In *e diffusion 

approximation, the ion energization process is limited by the amplitude of the second moment of 

the probability distribution of the fluctuations. This amplitude may become smaller as the scale 

of measurements is reduced. Thus, in the limit of small scales, the amplitude of the measured 

spectrum may decrease and thereby requiring a larger value of 7 to accomplish the same level of 

energization. 

But, the effects of the intermittency of the fluctuations on particle energization may be 

underestimated if we stay within the diffusion approximation. As it can be seen from the 

derivation of the diffusion approximation above, only the second order correlations of the 

fluctuations were included in the energization process. Since for intermittent turbulence, the 

probability distributions of the fluctuations are generally non-Gaussian, the effects of the 

intermittency can manifest in the higher order correlations beyond the second order diffusion 

coefficient. This implies that the higher order correlations of the velocity fluctuations may be of 

the order of At and therefore cannot be neglected in Eq. (14). Under such circumstances, the 

Fokker-Planck and diffusion approximations of the ion energization processes can become 
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inadequate. A more appropriate approach to address such non-Gaussian stochastic processes is to 

refer directly to the functional equation (1 3) using the non-Gaussian transition probability or the 

Langevin equation (12) with the actual intermittent time series of the electric field fluctuations. 

We have performed global simulations based on Eq. (1 3) for non-Gaussian intermittent 

fluctuations exhibiting the shape suggested by Castaing et ~ 1 . ' ~ :  

n,(r> =- 1 =  jexp( -&)exp( - ln2(c/oo)  )- d o  
2 d  0 2 0  2R2 o2 

where 6 represents either the x- or y-component of the dimensionless transverse velocity 

fluctuations and R > 0 is a parameter that characterizes the intermittency. We set In 00 = -A2 ,  

to ensure the variance equal to unity. For R = 0 ,  Eq. (19) reduces to a Gaussian distribution. As 

A increases, the degree of intermittency increases. Third panel of Fig. 9 shows the contours 

calculated for R = 1 with 7 = 1 / 8 .  For this case, the degree of intermittency is not strong 

enough to significantly affect the value of 7 . But with strong intermittent fluctuations ( A  = 2, 

bottom panel of Fig. 9), a value of 7 equal to 115 is required to adequately generate the ion'conic 

to observed energies. 

VI. SUMMARY 

We have provided a modem description of dynamical complexity relevant to the intermittent 

turbulence of coexisting nonpropagating spatiotemporal fluctuations and propagating modes in 

space plasmas. The theory is based on the physical concepts of sporadic and localized 

interactions of coherent structures that emerge naturally from plasma resonances. 

The technique of the dynamic renormalization group is applied to the study of forced andor 

self-organized criticality (FSOC), scale invariance, and symmetry breaking, related to such type 

of multiscale fluctuations. We also demonstrated that the particle interactions with the 

intermittent turbulence could lead to the eMicient energization of the plasma populations such as 

auroral ions. Numerical examples are presented to illustrate the concepts and methodology. 
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Figure Captions 

1 .  

2. 

3. 

4. 

5. 

6. 

7. 

Field-aligned spatiotemporal coherent structures. 

Cross-sectional view of coherent structures of the same polarity. Contours indicate constants 

of magnetic flux and arrows indicate directions of magnetic field. Blackened area is an 

intense current sheet (strong magnetic shear). 

2D MHD simulations of interacting coherent structures. Left panels are contours of 

magnetic flux at t = 300. Corresponding current density distributions are given in the right 

panels. For reference, the sound wave and AlfvCn wave traveling times through a distance 

2n  are about 4.4 and 60, respectively. 

Renormalization-group trajectories and fixed points. 

Fourier spectra of B 2 ( k )  at t = 300 (solid curves) and 600 (dashed curves) for'the 2D 

MHD simulations with (512x512) and (1024x1024) grid points. The straight lines have 

slopes of -2. Note that the scaling range is more extended for the larger simulation. 

2D MHD simulation results with (512x512) grid points -for the probability density 

distributions of the difference of the square of the magnetic field fluctuations at scales of 8 = 

2 (red), 4 (green), 8 (black), 16 (blue) and 32 (magenta) units of grid spacing. Left panels 

display the calculated results of P(dB2,d) and the right panels are the corresponding 

scaled distributions. 

Wavelet analyses of the 2D MHD simulation results with (512x512) grid points. Top 

panels show raw spatial distributions of J,  or B2 . Bottom left panel of (1) gives the power 

spectrum of complex Morlet wavelet transform of the current density J ,  and right bottom 

panel of (1) gives the contours of the corresponding logLIM( 1) of B2 for the homogeneous 

case. Left bottom panel of (2) gives the contours of logLIM( 1) of B2 at the neutral sheet 
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region and right bottom panel gives the corresponding contours away from the neutral sheet 

region for the shear case. The x-axis and scales are in units of the grid points. 

LIM(2) of B2 using the Morlet wavelet transform for (a) the homogeneous case and (b) 

shear case (* for y = 1 S7r and 0 0 0 for y = 1 .S;rt). 

Observed and calculated velocity contour plots for conic event of Retterer et d7 Top panel: 

observed contours. Second panel: Simulation results based on the diffusion approximation 

(A = 0). Third panel: Simulation results for weak intermittency (A = 1). Bottom panel: 

Simulation results for strong intermittency ( A  = 2 ). 

10. Solid line depicts w;l versus W, for simulated conic events. Dashed line is the asymptote 

predicted by Chang et a1.& 

8. 

9. 
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